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Abstract. The hermitian level of composition algebras with involution over
a ring is studied. In particular, it is shown that the hermitian level of a
composition algebra with standard involution over a semilocal ring, where two
is invertible, is always a power of two when finite. Furthermore, any power
of two can occur as the hermitian level of a composition algebra with non-
standard involution. Some bounds are obtained for the hermitian level of a
composition algebra with involution of the second kind.

1. Introduction

Let R be a unital, commutative, associative ring, equipped with a non-trivial
involution (i.e. an anti-automorphism of period 2). For x ∈ R, we call xx a
hermitian square. The smallest positive integer m such that −1 is a sum of m
hermitian squares in R is called the hermitian level of (R, ), denoted Sh(R, ).
If no such m exists, we set Sh(R, ) = ∞. Note that Sh(R, ) depends on
the involution and not just on the ring R and also that if = idR, then
Sh(R, ) = s(R) is the usual level.

In [7], Lewis showed that there exist commutative rings with non-trivial invo-
lution having any positive integer as hermitian level. He also showed that the
hermitian level, if finite, is a power of two for fields K of characteristic not two
with non-trivial involution and for quaternion division algebras D over fields of
characteristic not two with the standard involution.

K and D are exactly the non-split composition algebras of dimension 2 and 4
over a suitable field k. It is well-known that composition algebras only exist in
dimension 1, 2, 4 and 8. An 8-dimensional composition algebra C is called an
octonion (or Cayley) algebra and, although it is not associative, it retains the
most pleasing property of K and D: it comes equipped with a non-degenerate
norm form with values in k, which is multiplicative.

We investigate the hermitian level of composition algebras C with involution
over a ring R, extending the results of Lewis [7] for the standard involution and
some of the results of Serhir [14] for the non-standard involution ̂ on C (which
we introduce here in a more general context). In particular, we show that over
semilocal rings where 2 is invertible, the hermitian level of (C, ) is a power of
two if it is finite and that all powers of two can occur as the hermitian level of
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(C, ̂). Finally, we obtain some bounds on the hermitian level of C, equipped
with an involution of the second kind.

Our methods are mostly quadratic form theoretic in nature and usually adap-
tations of Lewis’s arguments to the more general setting of rings. We refer to the
standard works [1], [6] and [12] for background reading on quadratic forms over
rings, algebras with involution and nonassociative algebras respectively.

2. Preliminaries

2.1. Composition Algebras with Involution. Let R be a unital commuta-
tive associative ring, and A a unital nonassociative R-algebra which is finitely
generated projective of (constant) rank > 0 as an R-module. We will simply call
such an algebra A an “R-algebra” in the remainder of this paper.

Associativity in A is measured by the associator [x, y, z] = (xy)z − x(yz),
commutativity by the commutator [x, y] = xy − yx. Define the nucleus of A by

Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x]}
and the commuter of A by

Comm(A) = {x ∈ A | [x,A] = 0}.
An R-algebra C is called a composition algebra, if it carries a quadratic form

n : C → R satisfying the following two conditions:

(i) Its induced symmetric bilinear form n(x, y) := n(x + y)− n(x)− n(y) is

nondegenerate, i.e. determines an R-module isomorphism C
∼−→ C∨ =

HomR(C,R).
(ii) n permits composition, that is n(xy) = n(x)n(y) for all x, y ∈ C.

A composition algebra over R is split if it contains a composition subalgebra,
isomorphic to R ⊕ R. (See [9] for an explicit description of split composition
algebras.)

An R-algebra A is called quadratic in case there exists a quadratic form n : A→
R such that

n(1A) = 1 and x2 − n(1A, x)x+ n(x)1A = 0

for all x ∈ A. The form n is uniquely determined and called the norm of the
quadratic algebra A.

A nonassociative algebra is called alternative if its associator [x, y, z] is alter-
nating. Composition algebras are quadratic alternative algebras. More precisely,
a quadratic form n of the composition algebra satisfying (i) and (ii) above agrees
with its norm as a quadratic algebra and thus is unique. It is called the norm of
the composition algebra C and is sometimes also denoted by nC .

A quadratic alternative algebra is a composition algebra if and only if its norm
is nondegenerate [8, 4.6]. Composition algebras only exist in ranks 1, 2, 4 or
8. Those of rank 2 are exactly the quadratic étale R-algebras, those of rank 4
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exactly the well-known quaternion algebras. The ones of rank 8 are also called
octonion algebras.

Let τ be an involution on A, i.e. a map τ : A→ A satisfying

τ(x+ y) = τ(x) + τ(y), τ(xy) = τ(y)τ(x), and τ 2(x) = x

for all x, y ∈ A.
If 2 is an invertible element in R, we have A = Skew(A, τ)⊕ Sym(A, τ) with

Skew(A, τ) := {x ∈ A | τ(x) = −x}
the set of skew-symmetric elements and

Sym(A, τ) := {x ∈ A | τ(x) = x}
the set of symmetric elements in A with respect to τ . An involution is called
scalar if all the norms τ(x)x are scalars in R, and hence by linearization all traces
τ(x) + x are scalars in R, too. Note that for a scalar involution, nA(x) = τ(x)x
resp. tA(x) = τ(x)+x is a quadratic resp. a linear form on A, whenever a1A = 0
implies a = 0, for every a ∈ R [8, p. 86].

An involution τ on A is called of the first kind if τ |R = id. Let S be a quadratic
étale R-algebra with standard involution s0, and let A be an algebra over S. An
involution on A whose restriction to S is the standard involution is called of the
second kind.

Given an R-algebra A together with an involution τ , an element in A of the
form τ(x)x with x ∈ A is called a hermitian square in A. Following [7] the
hermitian level of A is the least integer m such that

−1 = τ(x1)x1 + · · ·+ τ(xm)xm.

We write Sh(A, τ) for the hermitian level and define Sh(A, τ) =∞ if −1 cannot
be written as a sum of hermitian squares in (A, τ). Obviously, the hermitian level
of an algebra depends on the particular involution and not just on the algebra.

Let ai ∈ R× (1 ≤ i ≤ m) be invertible. We define a map h : Am ×Am → A by

h(x, y) := a1τ(x1)y1 + · · ·+ amτ(xm)ym

for x = (x1, . . . , xm), y = (y1, · · · , ym) ∈ Am. This map is biadditive and satisfies

h(xα, yβ) = a1τ(x1α)(y1β) + · · ·+ amτ(xmα)(ymβ) = τ(α)h(x, y)β

provided that R1A ⊂ Comm(A)∩Nuc(A). The map h is called isotropic if there
are x1, . . . , xm ∈ A with at least one invertible xi ∈ A×, such that

m∑

i=1

aiτ(xi)xi = 0,

otherwise it is called anisotropic. Write m× 〈1〉 for the map h : Am × Am → A,
represented by the quadratic form 〈1, . . . , 1〉 = m×〈1〉, i.e. for h(x, y) = τ(x1)y1+
· · ·+ τ(xm)ym.
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A composition algebra C comes endowed with a standard involution , given
by x = t(x)1C − x, where t : C → R is the trace map given by t(x) := n(1C , x).
This involution is scalar.

2.2. The Cayley-Dickson Doubling Process. The Cayley-Dickson doubling
process is a well-known way to construct new algebras with scalar involution out
of a given one with such an involution. Let A be an R-algebra with involution
∗ and let µ ∈ R be such that µx = 0 implies x = 0 in A. Then the R-module
A⊕ A becomes a unital algebra via the multiplication

(u, v)(u′, v′) = (uu′ + µv′
∗

v, v′u+ vu′
∗

)

for u, u′, v, v′ ∈ A, with involution

(u, v)∗ = (u∗,−v).

It is called the (classical) Cayley-Dickson doubling ofA, and denoted by Cay(A, µ).
The involution ∗ is a scalar involution on Cay(A, µ) if and only if ∗ is a scalar
involution on A, with norm

nCay(A,µ)

(
(u, v)

)
= nA(u)− µnA(v).

The Cayley-Dickson doubling process depends on the scalar µ only up to an in-
vertible square. By repeated application of the Cayley-Dickson doubling process,
starting from a composition algebra C over R, we obtain either again a compo-
sition algebra (if the rank of the new algebra is less than or equal to 8), or a
generalized Cayley-Dickson algebra of rank 2m rank(C) ≥ 16. The latter are no
longer alternative, but still flexible (i.e. (xy)x = x(yx) holds for all x, y in the
algebra) with a scalar involution (cf. [8]).

When iterating the Cayley-Dickson doubling process, we use the shorthand
notation

Cay(A, µ, ν) := Cay
(
Cay(A, µ), ν

)
.

Over fields, the classical Cayley-Dickson process indeed generates all possible
composition algebras. Over rings, a more general version is required, which still
does not always yield all possible composition algebras, only those containing
a composition subalgebra of half its rank. This “generalized” Cayley-Dickson
doubling process is due to Petersson [9]. Its description is quite technical. Here
is the main result:

Let D be a composition algebra over R of rank ≤ 4 with standard involution .
Let P be a finitely generated projective right D-module of rank one, carrying a
nondegenerate hermitian form h : P × P → D. Define N : P → D by N(w) :=
h(w,w) for w ∈ P . For each µ ∈ R, the R-module

A = D ⊕ P

becomes a new R-algebra via the multiplication

(u,w)(u′, w′) = (uu′ + µh(w′, w), w′ · u+ w · u′)
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for u, u′ ∈ D, w,w′ ∈ P , and where · denotes the right D-module structure of P .
The algebra A constructed above is denoted by Cay(D,P, µN) := Cay(D,P, µh).
D itself is canonically a (free) right D-module of rank one and “norm one” (cf.
[9]). Any norm on D is similar to nD (resp. any nondegenerate hermitian form
h : D × D → D is similar to the canonical form given by the involution, i.e.,
by (w,w′) 7→ w′w). In this special case the “classical” Cayley-Dickson doubling
process Cay(D,µ) := Cay(D,D, µnD) with µ ∈ D is obtained.

3. The Standard Involution

When investigating the hermitian level, one of the easiest classes of nonassocia-
tive algebras to look at are algebras A with a scalar involution, since for these the
hermitian square τ(x)x is an element in R, and the map x→ τ(x)x a quadratic
form, provided that the ring R is isomorphic to a subring of A (cf. [8]). We start
our investigation by looking at composition algebras with standard involution .

If k is a field of characteristic not two, and C a split composition algebra over
k with standard involution , then it is easy to see that −1 = xx for an element
x ∈ {y ∈ C | t(y) = 0} = C0, i.e. for a pure quaternion (resp. octonion) in case
C is a quaternion (resp. octonion) algebra. More generally, we obtain:

Lemma 3.1. Let R be a ring with 2 ∈ R×, and C a split composition algebra
over R with standard involution , then Sh(C, ) = 1.

Proof. C is split if and only if C contains the split quadratic étale algebra R⊕R
with hyperbolic norm n ' 〈1,−1〉, in particular, nC ' 〈1,−1〉 ⊥ · · · which
implies that nC(x) = xx = −1 for a suitable element x ∈ C.

Note that any quaternion algebra over R with norm nC ' 〈1,−1〉 ⊥ · · · splits,
but that this is not necessarily so for an octonion algebra.

Lemma 3.2. Let R be a ring and let C be a composition algebra over R with
standard involution .

(1) If Sh(C, ) = m, then the form (m + 1) × nC is isotropic. Moreover,
if m × nC already is isotropic, then every isotropic vector (x1, . . . , xm)
satisfies nC(xi) = xixi 6∈ R× (or, equivalently, xi 6∈ C×), for all i, 1 ≤
i ≤ m.

(2) Let m× nC be anisotropic and let (x1, . . . , xm+1) be an isotropic vector of
(m+1)×nC such that xi ∈ C× for all i, 1 ≤ i ≤ (m+1), then Sh(C, ) =
m.

Proof. (1) Let m be the smallest integer such that −1 = x1x1+ · · ·+xmxm. Then
0 = 1 + x1x1 + · · · + xmxm, hence (m + 1) × nC is isotropic. In case m × nC is
isotropic, and there exists an isotropic vector (x1, . . . , xm) where xi is invertible
in C, for some i, 1 ≤ i ≤ m, then 0 = x1x1 + · · · + xmxm. Without loss of

generality assume x1 ∈ C×. Then also x1 ∈ C× and 0 = 1 + (x−1
1 x2)(x

−1
1 x2) +

· · ·+ (x−1
1 xm)(x

−1
1 xm), contradicting the minimality of m.
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(2) Let (m + 1) × nC be isotropic. Then as above this implies Sh(C, ) ≤
m, provided that there exists an isotropic vector (x1, . . . , xm+1) such that xi is
invertible in C, for some i, 1 ≤ i ≤ m + 1. Let s = Sh(C, ), then −1 =
x1x1 + · · · + xsxs and (s + 1)× nC is isotropic. Since m× nC is anisotropic, we
must have m < s+ 1 and conclude that Sh(C, ) = m.

Note that for any algebra with involution (A, τ), Sh(A, τ) = m always implies
that the “pseudo-hermitian form” (m + 1) × 〈1〉, as defined in 2.1, is isotropic.
However, the multiplicativity of the norm and the fact that the standard invo-
lution of a composition algebra is scalar are crucial in the converse of the above
lemma.

In particular, for semilocal rings we obtain a generalization of [7, 1.1] (applying
[1, III.(5.2)(iii)] as for instance in [1, III.(5.3), p. 87]):

Corollary 3.3.

(1) Let be the standard involution on a composition algebra C of rank greater
than 1 over a semilocal ring R with 2 ∈ R×. Let m ≥ 2 and assume
that either m is even, or that |R/m| ≥ 3, for all m ∈ max(R). Then
Sh(C, ) = m if and only if m × nC = 〈1, . . . , 1〉 ⊗ nC (m-times) is
anisotropic, but (m+ 1)× nC is isotropic.

(2) Let be the standard involution on a composition division algebra C over
a field k of char(k) 6= 2. Then Sh(C, ) = m if and only if m × nC =
〈1, . . . , 1〉 ⊗ nC (m-times) is anisotropic, but (m+ 1)× nC is isotropic.

Lemma 3.4 (cf. [7, 1.2]). Let C be a composition division algebra over a field k
of char(k) 6= 2 with standard involution . The following are equivalent:

(1) Zero is a nontrivial sum of hermitian squares, i.e. there exists an integer
m such that m× nC is an isotropic quadratic form.

(2) −1 is a sum of hermitian squares.
(3) Each symmetric element of C is a sum of hermitian squares.

Proof. The above corollary implies the equivalence of (1) and (2).
(3)⇒ (2) is obvious, since −1 ∈ Sym(C, ).
(1) ⇒ (3): Let 0 = x1x1 + · · · + xmxm = nC(x1) + · · · + nC(xm) with xi ∈ C

not all zero. Then m× nC is an isotropic k-quadratic form, hence universal, and
represents all invertible elements a ∈ Sym(C, ). That is, for any a ∈ k× there
are xi ∈ C such that a = nC(x1) + · · ·+ nC(xm).

The conclusion that (3) implies (2) implies (1) in the above proof also holds
for composition algebras over rings R where 2 is invertible. The proof of (1)
implies (3) holds provided that the following is true: If the R-quadratic form
〈1, . . . , 1〉 ⊗ nC is isotropic it contains a hyperbolic plane.

The following generalizes [7, 1.5].

Proposition 3.5. Let C be a composition algebra over a semilocal ring R with
2 ∈ R×, such that nC = 〈〈a, b〉〉 or nC = 〈〈a, b, c〉〉 is a Pfister form (this is always



THE HERMITIAN LEVEL OF COMPOSITION ALGEBRAS 7

the case if C has rank ≤ 4). If Sh(C, ) is finite then Sh(C, ) is a power of 2.
More precisely, then Sh(C, ) = 2−1d with d the order of the norm nC in W (R),
the Witt group of non-singular quadratic forms over R.

Proof. Assume that Sh(C, ) = m is finite. Then −1 = x1x1 + · · · + xmxm =
nC(x1) + · · · + nC(xm) and (m + 1) × nC is isotropic. Pick s such that 2s <
m+1 ≤ 2s+1. Then 2s+1×nC ∼= 〈1, . . . , 1〉⊗nC is an isotropic Pfister form, thus
hyperbolic [1, IV.(3.2)]. Therefore

2s+1 × nC ∼= 〈〈−1, . . . ,−1〉〉 ∼= 〈1,−1, . . . , 1,−1〉 ⊗ nC

and by Witt cancellation, 〈−1, . . . ,−1〉 ⊗ nC ∼= 〈1, . . . , 1〉 ⊗ nC . It follows that
−1 ∈ D(2s × nC), i.e. −1 is represented by 2s × nC , and so m = 2s.

Moreover, obviously nC is a torsion space whose order d in W (R) is less than
or equal to 2s+1. Now d must be a power of 2 [1, (6.1), p. 143], hence even
d = 2s+1, since 2s × nC ∼ 0 implies that −1 is a sum of 2s−1 < m hermitian
squares in (C, ), a contradiction. We conclude that m = 2−1d.

Corollary 3.6. Let C be a composition (division) algebra over a field k of
char(k) 6= 2. If Sh(C, ) is finite then Sh(C, ) is a power of 2. More precisely,
then Sh(C, ) = 2−1d with d the order of the norm nC in W (k).

Even more general, let A be a generalized Cayley-Dickson algebra of rank 2r

over a semilocal ring R with 2 invertible in the sense of [8, (6.2)], obtained from
R1 by a repeated application of the (classical) Cayley-Dickson doubling process
with scalar involution ∗ as described in [8, (6.3)]. Then Sh(A, ∗) also is a power
of two if it is finite, by the same argument as in the above proof.

An immediate consequence of the last proposition is the fact that any pre-
scribed power of two occurs as the level of an octonion division algebra with
standard involution over a field (cf. [7, Comment 2, p.470]). Let

k = R(x1, . . . , xm)
(
√√√√−

m∑

i=1

x2
i

)

be a field of level s(k) = Sh(k, id) = 2s. If s(k) ≥ 8, then the octonion algebra
Cay(k,−1,−1,−1) with standard involution has hermitian level 2s−3.

Recall that the level s(R) of a semilocal ring R, where 2 is invertible, is either
infinite or a power of two [1, (A.3), p. 177]. The following analog to [7, (1.7)] holds
in the setting of semilocal rings (it even holds for a generalized Cayley-Dickson
algebra obtained from R1 with scalar involution ∗):
Proposition 3.7 ([4, (1.5)], [1, (2.4), p. 95]). Let R be a semilocal ring where 2
is invertible. Let C be a composition algebra over R with standard involution
whose norm nC is a Pfister form. Let t be a positive integer. The set of invertible
values represented by the quadratic form nC ⊗ 〈〈1, . . . , 1〉〉 = 2t × nC over R is a
group.
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However, we can do better than this:

Proposition 3.8 ([13, 5.6]). Let R be a semilocal ring where 2 is invertible. Let
C be a composition algebra over R with standard involution whose norm nC
is a Pfister form. Let m = 2t. For every

∑m

i=1 zizi ∈ R×,
∑m

i=1 wiwi ∈ R there
exist u1, . . . , um ∈ C such that

( m∑

i=1

zizi

)( m∑

i=1

wiwi

)
=

m∑

i=1

uiui.

Moreover, there are v1, . . . , vm ∈ C such that

( m∑

i=1

zizi

)( m∑

i=1

vivi

)
=

m∑

i=1

wiwi.

Corollary 3.9 (cf. [7, 1.9]). Let m = 2s be a power of two. Let A be a generalized
Cayley-Dickson algebra over R of rank 2s in the sense of [8, (6.1), (6.2)] obtained
from R1 by a repeated application of the (classical) Cayley-Dickson doubling pro-
cess with scalar involution ∗.

(1) Let R be a semilocal ring where 2 is invertible. Then the product of two
sums of m hermitian squares in (A, ∗), where one is an invertible element
in R, is again a sum of m hermitian squares. In particular: Let (C, )
be a composition algebra over R. Then the product of two sums of m
hermitian squares in (C, ), where one is an invertible element in R, is
again a sum of m hermitian squares.

(2) Let k be a field of char(k) 6= 2. Then the product of two sums of m
hermitian squares in (A, ∗) is again a sum of m hermitian squares. In
particular: Let (C, ) be a composition algebra over k. Then the product of
two sums of m hermitian squares in (C, ) is again a sum of m hermitian
squares.

Proof. (1) For m = 2s, the form m× nA with nA(x)1A = x∗x (and in particular,
m × nC) is a Pfister form, and thus round [1, IV.(2.4), p.95], meaning that the
set D(m × nA) of invertible elements represented by the form is a group under
multiplication.

(2) is now obvious.

Note that we can reduce the number of squares needed in the above proposition
by one in certain cases (cf. [7, (1.10)]), since the following holds:

Proposition 3.10 ([1, p. 104]). Let R be a semilocal ring where 2 is invertible,
and let C be a composition algebra over R with standard involution . Let z =
(z1, . . . , zm) be such that

∑m

i=1 zizi ∈ R×. Then

( m∑

i=1

zizi

)( m∑

i=1

wiwi

)
=

m∑

i=1

uiui
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with u1 =
∑m

i=1 ziwi +
∑m

i=1 wizi = 〈〈1, . . . , 1〉〉 ⊗ nC
(
(z1, . . . , zm), (w1, . . . , wm)

)
.

Note that a form of type nC⊗〈〈1, . . . , 1〉〉 is not round over every ring (cf. [2]),
hence the above proofs do not always work. What remains true over an arbitrary
ring is the following property (which, dropping the assumption on (z1, . . . , zm) is
trivially satisfied even for any integer m):

Let C be a composition algebra with standard involution over a ring R. Then
the form nC ⊗ 〈〈a1, . . . , am〉〉 is the norm nA of the algebra

A = Cay(C,−a1, . . . ,−am)

and thus satisfies nA(x
2) = nA(x)

2 for all x ∈ A.
In particular: The square of a sum of s = 2r hermitian squares of a composition

algebra C over R with standard involution is again a sum of s = 2r hermitian
squares, i.e. (x1x1 + · · ·+xsxs)

2 = z1z1 + · · ·+ zszs, where the vector (z1, . . . , zs)
is bilinearly dependent on the vector (x1, . . . , xs).

The square of a sum of s = 2r squares over any R is again a sum of s = 2r

squares, i.e. (x2
1 + · · · + x2

s)
2 = z2

1 + · · · + z2
s , where the vector (z1, . . . , zs) is

bilinearly dependent on the vector (x1, . . . , xs).
[7, (1.8)] can be easily generalized to octonion division algebras over fields:

Proposition 3.11. Let C = Cay(k, a, b, c) be an octonion algebra over a field k
with standard involution . Let s(k) ≥ 8. If −a, −b and −c are a sum of at most
8−1s(k) squares in k then Sh(C, ) = 8−1s(k).

Even more generally, we obtain

Proposition 3.12. Let R be a semilocal ring where 2 is invertible.

(1) Let C = Cay(R, a) be a quadratic étale algebra over R with standard
involution . Let s(R) ≥ 2. If −a is a sum of at most 2−1s(R) squares in
R, then Sh(C, ) ≤ 2−1s(R).

(2) Let C = Cay(R, a, b) be a quaternion algebra over R with standard in-
volution . Let s(R) ≥ 4. If −a and −b are a sum of at most 4−1s(R)
squares in R, then Sh(C, ) ≤ 4−1s(R).

(3) Let C = Cay(R, a, b, c) be an octonion algebra over R with standard invo-
lution . Let s(R) ≥ 8. If −a, −b and −c are a sum of at most 8−1s(R)
squares in R, then Sh(C, ) ≤ 8−1s(R).

(4) Let C = Cay(R, a1, . . . , ar), r ≥ 2 be a generalized Cayley-Dickson algebra
over R with scalar involution ∗. Let s(R) ≥ 2r. If −a1, . . . ,−ar are sums
of at most 2−rs(R) squares in R, then Sh(C, ) ≤ 2−rs(R).

Proof. The proof is analogous to the one given in [7]. We demonstrate how
to do (1) for the convenience of the reader: Since s(R) = 2m, we can write
−1 =

∑m

i=1 r
2
i +

∑m

i=1 s
2
i with ri, si ∈ R. Let −a =

∑m

i=1 t
2
i with ti ∈ R.

Thus, in case
∑m

i=1 s
2
i is invertible in R there are v1, . . . , vm ∈ C such that
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(∑m

i=1 t
2
i

)(∑m

i=1 v
2
i

)
=
∑m

i=1 s
2
i by Proposition 3.8, and we get

m∑

i=1

r2
i +

( m∑

i=1

t2i
)( m∑

i=1

v2
i

)
=

m∑

i=1

(r2
i − av2

i ) =
m∑

i=1

nC(zi)

where zi = (ri, vi). It follows that Sh(C, ) ≤ m.

There is another way to generalize the idea of the proof of [7, (1.8)], a similar
result is mentioned in [14, (2.1)] for the quaternion case:

Proposition 3.13. Let k be a field of char(k) 6= 2, and C = Cay(D, c) a compo-
sition division algebra, i.e. c ∈ k× and D a quadratic separable field extension or
a quaternion algebra. Let be the standard involution of both D and C. Assume
that Sh(D, ) ≥ 2 and is finite.

(1) If −c is a sum of at most 2−1Sh(D, ) hermitian squares in (D, ), then

Sh(C, ) = 2−1Sh(D, ).

(2) If c is not a sum of less than or equal to Sh(D, ) hermitian squares in
(D, ), then

Sh(C, ) = Sh(D, ).

Also this result can easily be generalized to Cayley-Dickson algebras.

4. The Hat-involution

The hat-involution ̂ for quaternion algebras over fields of characteristic not
two, used by Lewis [7], can be generalized to our more general setting as follows:

Theorem 4.1. Let R be an arbitrary ring. Let C be a composition algebra over
R of rank greater than 2 which is the Cayley-Dickson doubling of a composition
algebra D of half its rank, i.e. C = Cay(D,P,N) as described in 2.2. Let be
the standard involution of D. Then

(̂u,w) := (u,w)

is an involution on C, which is not scalar.

The proof is a straightforward computation which uses in particular that the
multiplication on C is of the form

(u,w)(u′, w′) = (uu′ + h(w′, w), w′u+ wu′)

for u, u′ ∈ D and w,w′ ∈ P , and where h : P × P → D is the -hermitian form
induced by the norm N : P → R (written as unique bilinear map P × P → D
which satisfies the identity (wu)(wv) = N(w)vu in [9, (2.5)]). We call this
involution the hat-involution. Note that by the definition of the hat-involution,

Sh(C, ̂) ≤ Sh(D, ).

A straightforward computation shows that Sym(C, ̂) is a projective R-module
of (constant) rank 3 and Skew(C, ̂) a projective R-module of (constant) rank
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1 if C is a quaternion algebra. If C is an octonion algebra, then Sym(C, ̂) is
projective of (constant) rank 5, and Skew(C, ̂) of (constant) rank 3.

Theorem 4.2 ([11]). Let R be a ring with 2 ∈ R×, and C a composition alge-
bra of rank r over R. There is a one-one correspondence between non-standard
involutions of the first kind on C and composition subalgebras of rank r/2. More
precisely:

(1) Let τ be an involution on C of the first kind which is not the standard
involution . Then

C ∼= Cay(B,P,N)

with B = {x ∈ C | τ(x) = x} a composition subalgebra of C, and with
P = {x ∈ C | τ(x) = −x}.

(2) If B is a composition subalgebra of C of rank r/2, then B determines
a nontrivial automorphism f ∈ Aut(C) satisfying f 2 = id and thus an
involution τ = f ◦ of the first kind.

This implies that there exist composition algebras whose only involution of the
first kind is the standard one. This is because not every quaternion or octonion
algebra over a ring contains a composition subalgebra of half its rank. For exam-
ples, the reader is referred to [5], where octonion algebras over polynomial rings
are constructed, which indeed only have a composition subalgebra of rank 1. See
also [10].

Proposition 4.3 ([11]). Let R be a ring with 2 ∈ R×, and let C be a com-
position algebra over R with non-standard involution τ of the first kind. Then
C ∼= Cay(B,P,N) and τ

(
(u, v)

)
= (u, v) is the hat-involution on Cay(B,P,N).

As an immediate consequence it follows that in order to compute the hermitian
level of a composition algebra C with arbitrary non-standard involution, it suffices
to find the values of Sh(C, ̂).

Lemma 4.4. Let R be a ring with 2 ∈ R×, and C a split composition algebra
over R, equipped with the hat-involution. If C = Cay(D,P,N) with D split, or

if C = Cay(D,µ) with µ ∈ R×
2
, then Sh(C, ̂) = 1.

Proof. If C = Cay(D,P,N) with D a split composition algebra over R, then

Sh(C, ̂) ≤ Sh(D, ) = 1.

If C = Cay(D,µ) for some µ ∈ R×
2
with D not necessarily split, then there

exists an element v ∈ C such that vv = −1, and such that (̂0, v)(0, v) = (vv, 0) =
(−1, 0) ∈ D ⊕D = C.

The statement of [7, (2.2)] also holds if C is an octonion algebra:
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Lemma 4.5. Let k be a field of char(k) 6= 2. If C = Cay(k, a, b, c) is a com-
position division algebra over k, and Cay(k, a, b,−c) is not a division algebra,
then

Sh(C,̂) = 1.

Proof. Put D = (a, b)k. Then D is a division algebra, and Cay(k, a, b,−c) is no
division algebra if and only if there is an element z ∈ D× such that −c = zz.
View z as an element in C, and let 1, i, j, k, e be a standard basis of C, then ẑz =

zz = −c. We compute (̂ze−1)(ze−1) = c−2(ez)(ze) = c−2(ze)(ze) = c−2czz = −1
using the well-known identities ez = ze and (ue)(ve) = cvu for u, v ∈ D.

In particular, for any field where there is only one octonion division algebra C,
it follows that Sh(C,̂) = 1 (cf. [7, (2.3)]).

Example. Let C = Cay(R,−1,−1,−1) be the real octonions. Then Sh(C,̂) = 1.

Proposition 4.6. Let C = Cay(D,P,N) be a composition algebra over a ring R

where 2 is an invertible element. Define C̃ = Cay(D,P,−N).

(1) Sh(C̃, ) ≤ Sh(C,̂).
(2) If m = Sh(C̃, ) and if there are elements xi = (ui, wi) ∈ C̃ such that

both −1 =
∑m

i=1 xixi and 0 =
∑m

i=1 wiui for xi = (ui, wi) ∈ C̃, then

Sh(C,̂) ≤ Sh(C̃, ) as well, and in particular, Sh(C,̂) = Sh(C̃, ).

Proof. For an element x ∈ C = Cay(D,P,N) with x = (u,w) we compute

x̂x = (u,w)(u,w) =
(
uu+ h(w,w), wu+ wu

)
=
(
nD(u) +N(w), 2wu

)
.

Thus we obtain for xi = (ui, wi) ∈ C that

−1 =
m∑

i=1

x̂ixi =
m∑

i=1

̂(ui, wi)(ui, wi) =
m∑

i=1

(
nD(ui) +N(wi), 2wiui

)

which is equivalent to

−1 =
m∑

i=1

(
nD(ui) +N(wi)

)
and 0 =

m∑

i=1

wiui.

The first equality, however, is equivalent to

−1 =
m∑

i=1

nC̃
(
(ui, wi)

)
=

m∑

i=1

(ui, wi)(ui, wi),

where is the standard involution on C̃.

This generalizes an observation by Serhir [14, Sec. 4.2].

Proposition 4.7 ([7, (2.4)]). For any power of two, n = 2`, there exists an
octonion division algebra C over a field such that Sh(C, ̂) = 2`−1.
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Proof. The proof is analogous to the proof of [7, (2.4)]. Take

k = R(x1, . . . , xn)
(
√√√√−

n∑

i=1

x2
i

)

with n = 2`. Then s(k) = n. Consider the rational function field K = k(t1, t2) in
two variables over k and the octonion division algebra C = Cay(K,−1,−t1,−t2).
Obviously, m := Sh(C, ̂) ≤ Sh(k(

√
−1), ) = 2`−1. A straightforward computa-

tion shows that 0 =
∑m+1

i=1 x̂ixi implies

0 =
m+1∑

i=1

p2
i + q2

i + t1(r
2
i + s2

i ) + t2(α
2
i + β2

i + t1(γ
2
i + δ2

i ))

for xi = pi+qii+rij+sik+αie+βiie+γije+δike with pi, qi, ri, si, αi, βi, γi, δi ∈ K.
We may assume without loss of generality that these are all elements in k[t1, t2].
Put t1 = t2 = 0, then we obtain a sum of (2m+2) squares in k. Thus s(k) ≤ 2m+1
so that 2` ≤ 2m + 1, i.e. m ≥ 2`−1 − 1/2. Since m is an integer we must have
m = 2`−1.

It is an interesting question which values indeed are possible for the hermitian
level Sh(C, ̂) of an octonion algebra C. For a quaternion algebra D over a field of
characteristic not 2, it is known that Sh(D, ̂) is always a power of two, provided
that it is finite [14, Corollaire 3.2].

Lemma 4.8. Let k be a field of characteristic not two such that s(k) = 2t ≥ 8.
Let C = Cay(k, a, b, c) be an octonion division algebra.

(1) If −a,−b and c are each a sum of at most 8−1s(k) squares in k, then

2t−3 ≤ Sh(C, ̂) ≤ 2t−2.

(2) If −c is not a sum of less than or equal to Sh(D, ) hermitian squares in

(D, ), and if C̃ = Cay(D,−c) is a division algebra then Sh(C, ̂) is a
power of 2.

Proof. (1) For C̃ = Cay(k, a, b,−c) we have Sh(C̃, ) = 2t−3 = 2−1Sh(D, )

with D = (a, b)k. Therefore the assertion follows from the fact that Sh(C̃, ) ≤
Sh(C, ̂) ≤ Sh(D, ).

(2) In this case, Sh(C̃, ) = Sh(D, ) by Proposition 3.13 applied to the algebra
C̃.

Remark 4.9. Let C = Cay(k, a, b, c) be an octonion division algebra over a field.
For xi = pi+qii+rij+sik+αie+βiie+γije+δike with pi, qi, ri, si, αi, βi, γi, δi ∈ k
we calculate that 0 =

∑m

i=1 x̂ixi is equivalent to

0 =
m∑

i=1

(p2
i − aq2

i − br2
i + abs2

i )− c(α2
i − aβ2

i − bγ2
i + abδ2

i )(1)
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and

0 =
m∑

i=1

(αi + βii+ γij + δik)(pi − qii− rij − sik).(2)

Now (2) is equivalent to the equations

0 =
m∑

i=1

(αipi − βiqiα− γirib+ abδisi)

0 =
m∑

i=1

(−αiqi + βipi + γisib− δirib)

0 =
m∑

i=1

(αiri − βisia+ γipi + δiqia)

0 =
m∑

i=1

(−αisi − βiri + γiqi + δipi).

Thus 0 is a nontrivial sum of m hermitian squares in (C, ̂) if and only if in k
there exists a nontrivial common zero of 5 quadratic forms in 8m variables

p1, . . . , pm, q1, . . . , qm, s1, . . . , sm, r1, . . . , rm,

α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm, δ1, . . . , δm.

This indicates that it may be quite difficult to determine which values can occur
as Sh(C, ̂).

[7, 4.1, 4.2] generalize to octonion algebras as follows:

Lemma 4.10. Let k be a formally real field and C = Cay(k, a, b, c) an octonion
algebra over k.

(1) Let Sh(C, ) <∞.
(a) If −a and −b are sums of squares in k then so is c.
(b) If −c and −a (or −b) are sums of squares in k then so is b (or a).

(2) Let Sh(C, ̂) <∞.
(a) If −a and −b are sums of squares in k then so is −c.
(b) If c and a (or b) are sums of squares in k then so is −b (or −a).

Proof. (1) The proof is analogous to the one of [7, 4.1].

(2) If Sh(C,̂) < ∞ then S(C̃, ) < ∞ for C̃ := Cay(k, a, b,−c). Hence (1)
implies the assertion.

Lemma 4.11 ((cf. [7, 4.3])). Let k be a formally real field, and C = Cay(k, a, b, c)
an octonion algebra over k. If both −a and −b are sums of squares in k then either
Sh(C, ) or Sh(C, ̂) is infinite.

The proof is again analogous to the one given in [7].
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Conjecture. Let k be a field of characteristic not two and let C be any octonion
division algebra over k. If Sh(C, ̂) is finite, it must be a power of two.

5. Involutions of the Second Kind

We now briefly turn to involutions of the second kind on composition algebras.
Involutions of the second kind on generalized Cayley-Dickson algebras and com-
position algebras behave special in the following way. (For quaternion algebras,
this result is due to Albert, cf. [6, I.2.(2.22)].)

Theorem 5.1 ([11]). Suppose 2 is invertible in R. Let S be a quadratic étale
faithfully flat R-algebra with standard involution s0. Let C be a composition
algebra over S of rank ≥ 4, and A = Cay(C, µ1, . . . , µm) a generalized Cayley-
Dickson algebra of rankA = 2m rankC ≥ 16 (i.e. A is a noncommutative Jordan
algebra). Let τ be any involution on A of the second kind.

(1) There exists a unique flexible quadratic R-subalgebra A0 of A with a unique
scalar involution σ0 such that

A = A0 ⊗R S and τ = σ0 ⊗ s0.

The algebra A0 is uniquely determined by these conditions.
(2) There exists a unique composition R-subalgebra C0 of C such that

A = C0 ⊗R S and τ = ⊗ s0,

where denotes the standard involution on C0. The algebra C0 is uniquely
determined by these conditions.

We restrict ourselves to the study of these involutions on composition alge-
bras, since it is immediately obvious how to obtain an analogous statement also
for generalized Cayley-Dickson algebras. In the above situation, let τ be an in-
volution of the second kind on a composition algebra C over a quadratic étale
R-algebra S. We know that there is a unique composition subalgebra C0 over R
such that C ∼= C0 ⊗R S and τ = ⊗ s0. Obviously,

Sh(C, τ) ≤ min{Sh(C0, ), Sh(S, s0)}.

Moreover, if the quadratic étale algebras S = Cay(R, c) is a classical Cayley-
Dickson doubling of R, write x = (z, w) ∈ C = C0 ⊕ C0 (as an S-module) with
z, w ∈ C0. We compute τ(x) = (z,−w) and

τ(x)x =
(
nC0

(z)− cnC0
(w),−(zw + wz)

)
=
(
nC0

(z)− cnC0
(w),−nC0

(z, w)
)
.
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Thus

−1 =
m∑

i=1

τ(xi)xi

=
( m∑

i=1

(
nC0

(zi)− cnC0
(wi)

)
,−

m∑

i=1

nC0
(zi, wi)

)

=
( m∑

i=1

nA
(
(zi, wi)

)
,−

m∑

i=1

nC0
(zi, wi)

)

withA := Cay(C0, c) the generalized Cayley-Dickson algebra overR, and (zi, wi) ∈
A.

Lemma 5.2. In the above situation,

Sh(A, ∗) ≤ Sh(C, τ) ≤ Sh(C0, ).

If S/R = k/k0 is a separable quadratic field extension, then

d1 ≤ 2Sh(C, τ) ≤ d2,

where d1 is the order of the quadratic form nA in W (k), and d2 the order of the
quadratic form nC0

in W (k).
In particular, if c is not a sum of less than or equal to Sh(C0, ) hermitian

squares in (C0, ) then Sh(C, τ) is a power of two.

Proof. We know that Sh(C0, ) = Sh(A, ∗) by Proposition 3.13 (or, more precisely,
its generalization for Cayley-Dickson algebras). Thus the assertion follows from
Sh(A, ∗) ≤ Sh(C, τ) ≤ Sh(C0, ) (Proposition 3.5).

Acknowledgements

The second author thanks the first author and the Fakultät für Mathematik,
Universität Regensburg, for hospitality while this research was undertaken. Part
of this research is funded by the TMR research network (ERB FMRX CT-97-
0107) on “K-theory and algebraic groups”.

References

[1] Baeza, R: Quadratic Forms over Semilocal Rings, Lecture Notes in Mathematics, vol.
655, Springer-Verlag, Berlin-Heidelberg-New York, 1978

[2] Dai, Z.D., Lam, T.Y., Milgram, R.J.: Application of topology on problems of sums of
squares, Enseign. Math. (2) 27, 277–283 (1981)

[3] Jacobson, N.: Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo
(2) 7, 55–80 (1958)

[4] Knebusch, M: Runde Formen über semilokalen Ringen, Math. Ann. 193, 21–34 (1971)
[5] Knus, M.-A., Parimala, R., Sridharan, R.: On compositions and triality, J. Reine Angew.

Math. 457, 45–70 (1994)
[6] Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The Book of Involutions, AMS Coll.

Publications, Vol. 44 (1998)



THE HERMITIAN LEVEL OF COMPOSITION ALGEBRAS 17

[7] Lewis, D.W.: Sums of hermitian Squares, J. Algebra 115, 466–480 (1998)
[8] McCrimmon, K.: Nonassociative algebras with scalar involution, Pacific J. Math. 116

(1), 85–109 (1985)
[9] Petersson, H.: Composition algebras over algebraic curves of genus 0, Trans. Amer. Math.

Soc. 337, 473–493 (1993)
[10] Pumplün, S.: Quaternion algebras over elliptic curves, Comm. Algebra, 26 (12), 4357–

4373 (1998)
[11] Pumplün, S.: Involutions on composition algebras, preprint.
[12] Schafer, R.D.: An Introduction to Nonassociative Algebras, Corrected reprint of the 1966

original, Dover, New York, 1995
[13] Scheiderer, C.: On sums of squares in local rings, J. Reine Angew. Math. 540, 205–227

(2001)
[14] Serhir, A.: Niveau hermitien de certaines algèbres de quaternions, Comm. Algebra 25
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